//! Utility functions to traverse the unicode graphemes of a `Rope`'s text contents. //! //! Based on use ropey::{iter::Chunks, str_utils::byte_to_char_idx, RopeSlice}; use unicode_segmentation::{GraphemeCursor, GraphemeIncomplete}; use unicode_width::UnicodeWidthStr; use std::borrow::Cow; use std::fmt::{self, Debug, Display}; use std::marker::PhantomData; use std::ops::Deref; use std::ptr::NonNull; use std::{slice, str}; use crate::chars::{char_is_whitespace, char_is_word}; use crate::LineEnding; #[inline] pub fn tab_width_at(visual_x: usize, tab_width: u16) -> usize { tab_width as usize - (visual_x % tab_width as usize) } #[derive(Debug, Clone, PartialEq, Eq)] pub enum Grapheme<'a> { Newline, Tab { width: usize }, Other { g: GraphemeStr<'a> }, } impl<'a> Grapheme<'a> { pub fn new(g: GraphemeStr<'a>, visual_x: usize, tab_width: u16) -> Grapheme<'a> { match g { g if g == "\t" => Grapheme::Tab { width: tab_width_at(visual_x, tab_width), }, _ if LineEnding::from_str(&g).is_some() => Grapheme::Newline, _ => Grapheme::Other { g }, } } pub fn change_position(&mut self, visual_x: usize, tab_width: u16) { if let Grapheme::Tab { width } = self { *width = tab_width_at(visual_x, tab_width) } } /// Returns the a visual width of this grapheme, #[inline] pub fn width(&self) -> usize { match *self { // width is not cached because we are dealing with // ASCII almost all the time which already has a fastpath // it's okay to convert to u16 here because no codepoint has a width larger // than 2 and graphemes are usually atmost two visible codepoints wide Grapheme::Other { ref g } => grapheme_width(g), Grapheme::Tab { width } => width, Grapheme::Newline => 1, } } pub fn is_whitespace(&self) -> bool { !matches!(&self, Grapheme::Other { g } if !g.chars().all(char_is_whitespace)) } // TODO currently word boundaries are used for softwrapping. // This works best for programming languages and well for prose. // This could however be improved in the future by considering unicode // character classes but pub fn is_word_boundary(&self) -> bool { !matches!(&self, Grapheme::Other { g,.. } if g.chars().all(char_is_word)) } } impl Display for Grapheme<'_> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match *self { Grapheme::Newline => write!(f, " "), Grapheme::Tab { width } => { for _ in 0..width { write!(f, " ")?; } Ok(()) } Grapheme::Other { ref g } => { write!(f, "{g}") } } } } #[must_use] pub fn grapheme_width(g: &str) -> usize { if g.as_bytes()[0] <= 127 { // Fast-path ascii. // Point 1: theoretically, ascii control characters should have zero // width, but in our case we actually want them to have width: if they // show up in text, we want to treat them as textual elements that can // be edited. So we can get away with making all ascii single width // here. // Point 2: we're only examining the first codepoint here, which means // we're ignoring graphemes formed with combining characters. However, // if it starts with ascii, it's going to be a single-width grapeheme // regardless, so, again, we can get away with that here. // Point 3: we're only examining the first _byte_. But for utf8, when // checking for ascii range values only, that works. 1 } else { // We use max(1) here because all grapeheme clusters--even illformed // ones--should have at least some width so they can be edited // properly. // TODO properly handle unicode width for all codepoints // example of where unicode width is currently wrong: 🤦🏼‍♂️ (taken from https://hsivonen.fi/string-length/) UnicodeWidthStr::width(g).max(1) } } #[must_use] pub fn nth_prev_grapheme_boundary(slice: RopeSlice, char_idx: usize, n: usize) -> usize { // Bounds check debug_assert!(char_idx <= slice.len_chars()); // We work with bytes for this, so convert. let mut byte_idx = slice.char_to_byte(char_idx); // Get the chunk with our byte index in it. let (mut chunk, mut chunk_byte_idx, mut chunk_char_idx, _) = slice.chunk_at_byte(byte_idx); // Set up the grapheme cursor. let mut gc = GraphemeCursor::new(byte_idx, slice.len_bytes(), true); // Find the previous grapheme cluster boundary. for _ in 0..n { loop { match gc.prev_boundary(chunk, chunk_byte_idx) { Ok(None) => return 0, Ok(Some(n)) => { byte_idx = n; break; } Err(GraphemeIncomplete::PrevChunk) => { let (a, b, c, _) = slice.chunk_at_byte(chunk_byte_idx - 1); chunk = a; chunk_byte_idx = b; chunk_char_idx = c; } Err(GraphemeIncomplete::PreContext(n)) => { let ctx_chunk = slice.chunk_at_byte(n - 1).0; gc.provide_context(ctx_chunk, n - ctx_chunk.len()); } _ => unreachable!(), } } } let tmp = byte_to_char_idx(chunk, byte_idx - chunk_byte_idx); chunk_char_idx + tmp } /// Finds the previous grapheme boundary before the given char position. #[must_use] #[inline(always)] pub fn prev_grapheme_boundary(slice: RopeSlice, char_idx: usize) -> usize { nth_prev_grapheme_boundary(slice, char_idx, 1) } #[must_use] pub fn nth_next_grapheme_boundary(slice: RopeSlice, char_idx: usize, n: usize) -> usize { // Bounds check debug_assert!(char_idx <= slice.len_chars()); // We work with bytes for this, so convert. let mut byte_idx = slice.char_to_byte(char_idx); // Get the chunk with our byte index in it. let (mut chunk, mut chunk_byte_idx, mut chunk_char_idx, _) = slice.chunk_at_byte(byte_idx); // Set up the grapheme cursor. let mut gc = GraphemeCursor::new(byte_idx, slice.len_bytes(), true); // Find the nth next grapheme cluster boundary. for _ in 0..n { loop { match gc.next_boundary(chunk, chunk_byte_idx) { Ok(None) => return slice.len_chars(), Ok(Some(n)) => { byte_idx = n; break; } Err(GraphemeIncomplete::NextChunk) => { chunk_byte_idx += chunk.len(); let (a, _, c, _) = slice.chunk_at_byte(chunk_byte_idx); chunk = a; chunk_char_idx = c; } Err(GraphemeIncomplete::PreContext(n)) => { let ctx_chunk = slice.chunk_at_byte(n - 1).0; gc.provide_context(ctx_chunk, n - ctx_chunk.len()); } _ => unreachable!(), } } } let tmp = byte_to_char_idx(chunk, byte_idx - chunk_byte_idx); chunk_char_idx + tmp } #[must_use] pub fn nth_next_grapheme_boundary_byte(slice: RopeSlice, mut byte_idx: usize, n: usize) -> usize { // Bounds check debug_assert!(byte_idx <= slice.len_bytes()); // Get the chunk with our byte index in it. let (mut chunk, mut chunk_byte_idx, mut _chunk_char_idx, _) = slice.chunk_at_byte(byte_idx); // Set up the grapheme cursor. let mut gc = GraphemeCursor::new(byte_idx, slice.len_bytes(), true); // Find the nth next grapheme cluster boundary. for _ in 0..n { loop { match gc.next_boundary(chunk, chunk_byte_idx) { Ok(None) => return slice.len_bytes(), Ok(Some(n)) => { byte_idx = n; break; } Err(GraphemeIncomplete::NextChunk) => { chunk_byte_idx += chunk.len(); let (a, _, _c, _) = slice.chunk_at_byte(chunk_byte_idx); chunk = a; // chunk_char_idx = c; } Err(GraphemeIncomplete::PreContext(n)) => { let ctx_chunk = slice.chunk_at_byte(n - 1).0; gc.provide_context(ctx_chunk, n - ctx_chunk.len()); } _ => unreachable!(), } } } byte_idx } /// Finds the next grapheme boundary after the given char position. #[must_use] #[inline(always)] pub fn next_grapheme_boundary(slice: RopeSlice, char_idx: usize) -> usize { nth_next_grapheme_boundary(slice, char_idx, 1) } /// Finds the next grapheme boundary after the given byte position. #[must_use] #[inline(always)] pub fn next_grapheme_boundary_byte(slice: RopeSlice, byte_idx: usize) -> usize { nth_next_grapheme_boundary_byte(slice, byte_idx, 1) } /// Returns the passed char index if it's already a grapheme boundary, /// or the next grapheme boundary char index if not. #[must_use] #[inline] pub fn ensure_grapheme_boundary_next(slice: RopeSlice, char_idx: usize) -> usize { if char_idx == 0 { char_idx } else { next_grapheme_boundary(slice, char_idx - 1) } } /// Returns the passed char index if it's already a grapheme boundary, /// or the prev grapheme boundary char index if not. #[must_use] #[inline] pub fn ensure_grapheme_boundary_prev(slice: RopeSlice, char_idx: usize) -> usize { if char_idx == slice.len_chars() { char_idx } else { prev_grapheme_boundary(slice, char_idx + 1) } } /// Returns the passed byte index if it's already a grapheme boundary, /// or the next grapheme boundary byte index if not. #[must_use] #[inline] pub fn ensure_grapheme_boundary_next_byte(slice: RopeSlice, byte_idx: usize) -> usize { if byte_idx == 0 { byte_idx } else { // TODO: optimize so we're not constructing grapheme cursor twice if is_grapheme_boundary_byte(slice, byte_idx) { byte_idx } else { next_grapheme_boundary_byte(slice, byte_idx) } } } /// Returns whether the given char position is a grapheme boundary. #[must_use] pub fn is_grapheme_boundary(slice: RopeSlice, char_idx: usize) -> bool { // Bounds check debug_assert!(char_idx <= slice.len_chars()); // We work with bytes for this, so convert. let byte_idx = slice.char_to_byte(char_idx); // Get the chunk with our byte index in it. let (chunk, chunk_byte_idx, _, _) = slice.chunk_at_byte(byte_idx); // Set up the grapheme cursor. let mut gc = GraphemeCursor::new(byte_idx, slice.len_bytes(), true); // Determine if the given position is a grapheme cluster boundary. loop { match gc.is_boundary(chunk, chunk_byte_idx) { Ok(n) => return n, Err(GraphemeIncomplete::PreContext(n)) => { let (ctx_chunk, ctx_byte_start, _, _) = slice.chunk_at_byte(n - 1); gc.provide_context(ctx_chunk, ctx_byte_start); } Err(_) => unreachable!(), } } } /// Returns whether the given byte position is a grapheme boundary. #[must_use] pub fn is_grapheme_boundary_byte(slice: RopeSlice, byte_idx: usize) -> bool { // Bounds check debug_assert!(byte_idx <= slice.len_bytes()); // Get the chunk with our byte index in it. let (chunk, chunk_byte_idx, _, _) = slice.chunk_at_byte(byte_idx); // Set up the grapheme cursor. let mut gc = GraphemeCursor::new(byte_idx, slice.len_bytes(), true); // Determine if the given position is a grapheme cluster boundary. loop { match gc.is_boundary(chunk, chunk_byte_idx) { Ok(n) => return n, Err(GraphemeIncomplete::PreContext(n)) => { let (ctx_chunk, ctx_byte_start, _, _) = slice.chunk_at_byte(n - 1); gc.provide_context(ctx_chunk, ctx_byte_start); } Err(_) => unreachable!(), } } } /// An iterator over the graphemes of a `RopeSlice`. #[derive(Clone)] pub struct RopeGraphemes<'a> { text: RopeSlice<'a>, chunks: Chunks<'a>, cur_chunk: &'a str, cur_chunk_start: usize, cursor: GraphemeCursor, } impl<'a> fmt::Debug for RopeGraphemes<'a> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("RopeGraphemes") .field("text", &self.text) .field("chunks", &self.chunks) .field("cur_chunk", &self.cur_chunk) .field("cur_chunk_start", &self.cur_chunk_start) // .field("cursor", &self.cursor) .finish() } } impl<'a> RopeGraphemes<'a> { #[must_use] pub fn new(slice: RopeSlice) -> RopeGraphemes { let mut chunks = slice.chunks(); let first_chunk = chunks.next().unwrap_or(""); RopeGraphemes { text: slice, chunks, cur_chunk: first_chunk, cur_chunk_start: 0, cursor: GraphemeCursor::new(0, slice.len_bytes(), true), } } } impl<'a> Iterator for RopeGraphemes<'a> { type Item = RopeSlice<'a>; fn next(&mut self) -> Option> { let a = self.cursor.cur_cursor(); let b; loop { match self .cursor .next_boundary(self.cur_chunk, self.cur_chunk_start) { Ok(None) => { return None; } Ok(Some(n)) => { b = n; break; } Err(GraphemeIncomplete::NextChunk) => { self.cur_chunk_start += self.cur_chunk.len(); self.cur_chunk = self.chunks.next().unwrap_or(""); } Err(GraphemeIncomplete::PreContext(idx)) => { let (chunk, byte_idx, _, _) = self.text.chunk_at_byte(idx.saturating_sub(1)); self.cursor.provide_context(chunk, byte_idx); } _ => unreachable!(), } } if a < self.cur_chunk_start { Some(self.text.byte_slice(a..b)) } else { let a2 = a - self.cur_chunk_start; let b2 = b - self.cur_chunk_start; Some((&self.cur_chunk[a2..b2]).into()) } } } /// An iterator over the graphemes of a `RopeSlice` in reverse. #[derive(Clone)] pub struct RevRopeGraphemes<'a> { text: RopeSlice<'a>, chunks: Chunks<'a>, cur_chunk: &'a str, cur_chunk_start: usize, cursor: GraphemeCursor, } impl<'a> fmt::Debug for RevRopeGraphemes<'a> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("RevRopeGraphemes") .field("text", &self.text) .field("chunks", &self.chunks) .field("cur_chunk", &self.cur_chunk) .field("cur_chunk_start", &self.cur_chunk_start) // .field("cursor", &self.cursor) .finish() } } impl<'a> RevRopeGraphemes<'a> { #[must_use] pub fn new(slice: RopeSlice) -> RevRopeGraphemes { let (mut chunks, mut cur_chunk_start, _, _) = slice.chunks_at_byte(slice.len_bytes()); chunks.reverse(); let first_chunk = chunks.next().unwrap_or(""); cur_chunk_start -= first_chunk.len(); RevRopeGraphemes { text: slice, chunks, cur_chunk: first_chunk, cur_chunk_start, cursor: GraphemeCursor::new(slice.len_bytes(), slice.len_bytes(), true), } } } impl<'a> Iterator for RevRopeGraphemes<'a> { type Item = RopeSlice<'a>; fn next(&mut self) -> Option> { let a = self.cursor.cur_cursor(); let b; loop { match self .cursor .prev_boundary(self.cur_chunk, self.cur_chunk_start) { Ok(None) => { return None; } Ok(Some(n)) => { b = n; break; } Err(GraphemeIncomplete::PrevChunk) => { self.cur_chunk = self.chunks.next().unwrap_or(""); self.cur_chunk_start -= self.cur_chunk.len(); } Err(GraphemeIncomplete::PreContext(idx)) => { let (chunk, byte_idx, _, _) = self.text.chunk_at_byte(idx.saturating_sub(1)); self.cursor.provide_context(chunk, byte_idx); } _ => unreachable!(), } } if a >= self.cur_chunk_start + self.cur_chunk.len() { Some(self.text.byte_slice(b..a)) } else { let a2 = a - self.cur_chunk_start; let b2 = b - self.cur_chunk_start; Some((&self.cur_chunk[b2..a2]).into()) } } } /// A highly compressed Cow<'a, str> that holds /// atmost u31::MAX bytes and is readonly pub struct GraphemeStr<'a> { ptr: NonNull, len: u32, phantom: PhantomData<&'a str>, } impl GraphemeStr<'_> { const MASK_OWNED: u32 = 1 << 31; fn compute_len(&self) -> usize { (self.len & !Self::MASK_OWNED) as usize } } impl Deref for GraphemeStr<'_> { type Target = str; fn deref(&self) -> &Self::Target { unsafe { let bytes = slice::from_raw_parts(self.ptr.as_ptr(), self.compute_len()); str::from_utf8_unchecked(bytes) } } } impl Drop for GraphemeStr<'_> { fn drop(&mut self) { if self.len & Self::MASK_OWNED != 0 { // free allocation unsafe { drop(Box::from_raw(slice::from_raw_parts_mut( self.ptr.as_ptr(), self.compute_len(), ))); } } } } impl<'a> From<&'a str> for GraphemeStr<'a> { fn from(g: &'a str) -> Self { GraphemeStr { ptr: unsafe { NonNull::new_unchecked(g.as_bytes().as_ptr() as *mut u8) }, len: i32::try_from(g.len()).unwrap() as u32, phantom: PhantomData, } } } impl<'a> From for GraphemeStr<'a> { fn from(g: String) -> Self { let len = g.len(); let ptr = Box::into_raw(g.into_bytes().into_boxed_slice()) as *mut u8; GraphemeStr { ptr: unsafe { NonNull::new_unchecked(ptr) }, len: (i32::try_from(len).unwrap() as u32) | Self::MASK_OWNED, phantom: PhantomData, } } } impl<'a> From> for GraphemeStr<'a> { fn from(g: Cow<'a, str>) -> Self { match g { Cow::Borrowed(g) => g.into(), Cow::Owned(g) => g.into(), } } } impl> PartialEq for GraphemeStr<'_> { fn eq(&self, other: &T) -> bool { self.deref() == other.deref() } } impl PartialEq for GraphemeStr<'_> { fn eq(&self, other: &str) -> bool { self.deref() == other } } impl Eq for GraphemeStr<'_> {} impl Debug for GraphemeStr<'_> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { Debug::fmt(self.deref(), f) } } impl Display for GraphemeStr<'_> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { Display::fmt(self.deref(), f) } } impl Clone for GraphemeStr<'_> { fn clone(&self) -> Self { self.deref().to_owned().into() } }