forked from Mirrors/helix
wip: importing to github
parent
6905ff03c2
commit
613d06dfb0
@ -0,0 +1,213 @@
|
||||
// Based on https://github.com/cessen/led/blob/c4fa72405f510b7fd16052f90a598c429b3104a6/src/graphemes.rs
|
||||
use ropey::{iter::Chunks, str_utils::byte_to_char_idx, RopeSlice};
|
||||
use unicode_segmentation::{GraphemeCursor, GraphemeIncomplete};
|
||||
use unicode_width::UnicodeWidthStr;
|
||||
|
||||
pub fn grapheme_width(g: &str) -> usize {
|
||||
if g.as_bytes()[0] <= 127 {
|
||||
// Fast-path ascii.
|
||||
// Point 1: theoretically, ascii control characters should have zero
|
||||
// width, but in our case we actually want them to have width: if they
|
||||
// show up in text, we want to treat them as textual elements that can
|
||||
// be editied. So we can get away with making all ascii single width
|
||||
// here.
|
||||
// Point 2: we're only examining the first codepoint here, which means
|
||||
// we're ignoring graphemes formed with combining characters. However,
|
||||
// if it starts with ascii, it's going to be a single-width grapeheme
|
||||
// regardless, so, again, we can get away with that here.
|
||||
// Point 3: we're only examining the first _byte_. But for utf8, when
|
||||
// checking for ascii range values only, that works.
|
||||
1
|
||||
} else {
|
||||
// We use max(1) here because all grapeheme clusters--even illformed
|
||||
// ones--should have at least some width so they can be edited
|
||||
// properly.
|
||||
UnicodeWidthStr::width(g).max(1)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn nth_prev_grapheme_boundary(slice: &RopeSlice, char_idx: usize, n: usize) -> usize {
|
||||
// TODO: implement this more efficiently. This has to do a lot of
|
||||
// re-scanning of rope chunks. Probably move the main implementation here,
|
||||
// and have prev_grapheme_boundary call this instead.
|
||||
let mut char_idx = char_idx;
|
||||
for _ in 0..n {
|
||||
char_idx = prev_grapheme_boundary(slice, char_idx);
|
||||
}
|
||||
char_idx
|
||||
}
|
||||
|
||||
/// Finds the previous grapheme boundary before the given char position.
|
||||
pub fn prev_grapheme_boundary(slice: &RopeSlice, char_idx: usize) -> usize {
|
||||
// Bounds check
|
||||
debug_assert!(char_idx <= slice.len_chars());
|
||||
|
||||
// We work with bytes for this, so convert.
|
||||
let byte_idx = slice.char_to_byte(char_idx);
|
||||
|
||||
// Get the chunk with our byte index in it.
|
||||
let (mut chunk, mut chunk_byte_idx, mut chunk_char_idx, _) = slice.chunk_at_byte(byte_idx);
|
||||
|
||||
// Set up the grapheme cursor.
|
||||
let mut gc = GraphemeCursor::new(byte_idx, slice.len_bytes(), true);
|
||||
|
||||
// Find the previous grapheme cluster boundary.
|
||||
loop {
|
||||
match gc.prev_boundary(chunk, chunk_byte_idx) {
|
||||
Ok(None) => return 0,
|
||||
Ok(Some(n)) => {
|
||||
let tmp = byte_to_char_idx(chunk, n - chunk_byte_idx);
|
||||
return chunk_char_idx + tmp;
|
||||
}
|
||||
Err(GraphemeIncomplete::PrevChunk) => {
|
||||
let (a, b, c, _) = slice.chunk_at_byte(chunk_byte_idx - 1);
|
||||
chunk = a;
|
||||
chunk_byte_idx = b;
|
||||
chunk_char_idx = c;
|
||||
}
|
||||
Err(GraphemeIncomplete::PreContext(n)) => {
|
||||
let ctx_chunk = slice.chunk_at_byte(n - 1).0;
|
||||
gc.provide_context(ctx_chunk, n - ctx_chunk.len());
|
||||
}
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn nth_next_grapheme_boundary(slice: &RopeSlice, char_idx: usize, n: usize) -> usize {
|
||||
// TODO: implement this more efficiently. This has to do a lot of
|
||||
// re-scanning of rope chunks. Probably move the main implementation here,
|
||||
// and have next_grapheme_boundary call this instead.
|
||||
let mut char_idx = char_idx;
|
||||
for _ in 0..n {
|
||||
char_idx = next_grapheme_boundary(slice, char_idx);
|
||||
}
|
||||
char_idx
|
||||
}
|
||||
|
||||
/// Finds the next grapheme boundary after the given char position.
|
||||
pub fn next_grapheme_boundary(slice: &RopeSlice, char_idx: usize) -> usize {
|
||||
// Bounds check
|
||||
debug_assert!(char_idx <= slice.len_chars());
|
||||
|
||||
// We work with bytes for this, so convert.
|
||||
let byte_idx = slice.char_to_byte(char_idx);
|
||||
|
||||
// Get the chunk with our byte index in it.
|
||||
let (mut chunk, mut chunk_byte_idx, mut chunk_char_idx, _) = slice.chunk_at_byte(byte_idx);
|
||||
|
||||
// Set up the grapheme cursor.
|
||||
let mut gc = GraphemeCursor::new(byte_idx, slice.len_bytes(), true);
|
||||
|
||||
// Find the next grapheme cluster boundary.
|
||||
loop {
|
||||
match gc.next_boundary(chunk, chunk_byte_idx) {
|
||||
Ok(None) => return slice.len_chars(),
|
||||
Ok(Some(n)) => {
|
||||
let tmp = byte_to_char_idx(chunk, n - chunk_byte_idx);
|
||||
return chunk_char_idx + tmp;
|
||||
}
|
||||
Err(GraphemeIncomplete::NextChunk) => {
|
||||
chunk_byte_idx += chunk.len();
|
||||
let (a, _, c, _) = slice.chunk_at_byte(chunk_byte_idx);
|
||||
chunk = a;
|
||||
chunk_char_idx = c;
|
||||
}
|
||||
Err(GraphemeIncomplete::PreContext(n)) => {
|
||||
let ctx_chunk = slice.chunk_at_byte(n - 1).0;
|
||||
gc.provide_context(ctx_chunk, n - ctx_chunk.len());
|
||||
}
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns whether the given char position is a grapheme boundary.
|
||||
pub fn is_grapheme_boundary(slice: &RopeSlice, char_idx: usize) -> bool {
|
||||
// Bounds check
|
||||
debug_assert!(char_idx <= slice.len_chars());
|
||||
|
||||
// We work with bytes for this, so convert.
|
||||
let byte_idx = slice.char_to_byte(char_idx);
|
||||
|
||||
// Get the chunk with our byte index in it.
|
||||
let (chunk, chunk_byte_idx, _, _) = slice.chunk_at_byte(byte_idx);
|
||||
|
||||
// Set up the grapheme cursor.
|
||||
let mut gc = GraphemeCursor::new(byte_idx, slice.len_bytes(), true);
|
||||
|
||||
// Determine if the given position is a grapheme cluster boundary.
|
||||
loop {
|
||||
match gc.is_boundary(chunk, chunk_byte_idx) {
|
||||
Ok(n) => return n,
|
||||
Err(GraphemeIncomplete::PreContext(n)) => {
|
||||
let (ctx_chunk, ctx_byte_start, _, _) = slice.chunk_at_byte(n - 1);
|
||||
gc.provide_context(ctx_chunk, ctx_byte_start);
|
||||
}
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// An iterator over the graphemes of a RopeSlice.
|
||||
#[derive(Clone)]
|
||||
pub struct RopeGraphemes<'a> {
|
||||
text: RopeSlice<'a>,
|
||||
chunks: Chunks<'a>,
|
||||
cur_chunk: &'a str,
|
||||
cur_chunk_start: usize,
|
||||
cursor: GraphemeCursor,
|
||||
}
|
||||
|
||||
impl<'a> RopeGraphemes<'a> {
|
||||
pub fn new<'b>(slice: &RopeSlice<'b>) -> RopeGraphemes<'b> {
|
||||
let mut chunks = slice.chunks();
|
||||
let first_chunk = chunks.next().unwrap_or("");
|
||||
RopeGraphemes {
|
||||
text: *slice,
|
||||
chunks: chunks,
|
||||
cur_chunk: first_chunk,
|
||||
cur_chunk_start: 0,
|
||||
cursor: GraphemeCursor::new(0, slice.len_bytes(), true),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Iterator for RopeGraphemes<'a> {
|
||||
type Item = RopeSlice<'a>;
|
||||
|
||||
fn next(&mut self) -> Option<RopeSlice<'a>> {
|
||||
let a = self.cursor.cur_cursor();
|
||||
let b;
|
||||
loop {
|
||||
match self
|
||||
.cursor
|
||||
.next_boundary(self.cur_chunk, self.cur_chunk_start)
|
||||
{
|
||||
Ok(None) => {
|
||||
return None;
|
||||
}
|
||||
Ok(Some(n)) => {
|
||||
b = n;
|
||||
break;
|
||||
}
|
||||
Err(GraphemeIncomplete::NextChunk) => {
|
||||
self.cur_chunk_start += self.cur_chunk.len();
|
||||
self.cur_chunk = self.chunks.next().unwrap_or("");
|
||||
}
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
||||
if a < self.cur_chunk_start {
|
||||
let a_char = self.text.byte_to_char(a);
|
||||
let b_char = self.text.byte_to_char(b);
|
||||
|
||||
Some(self.text.slice(a_char..b_char))
|
||||
} else {
|
||||
let a2 = a - self.cur_chunk_start;
|
||||
let b2 = b - self.cur_chunk_start;
|
||||
Some((&self.cur_chunk[a2..b2]).into())
|
||||
}
|
||||
}
|
||||
}
|
@ -0,0 +1,18 @@
|
||||
|
||||
// IDEA: render to a cache buffer, then if not changed, copy the buf into the parent
|
||||
pub trait Component {
|
||||
/// Process input events, return true if handled.
|
||||
fn process_event(&mut self, event: crossterm::event::Event, args) -> bool;
|
||||
/// Should redraw? Useful for saving redraw cycles if we know component didn't change.
|
||||
fn should_update(&self) -> bool { true }
|
||||
|
||||
fn render(&mut self, surface: &mut Surface, args: ());
|
||||
}
|
||||
|
||||
// HStack / VStack
|
||||
// focus by component id: each View/Editor gets it's own incremental id at create
|
||||
// Component: View(Arc<State>) -> multiple views can point to same state
|
||||
// id 0 = prompt?
|
||||
// when entering to prompt, it needs to direct Commands to last focus window
|
||||
// -> prompt.trigger(focus_id), on_leave -> focus(focus_id)
|
||||
// popups on another layer
|
Loading…
Reference in New Issue