You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
helix-plus/helix-core/src/graphemes.rs

525 lines
17 KiB
Rust

//! Utility functions to traverse the unicode graphemes of a `Rope`'s text contents.
//!
//! Based on <https://github.com/cessen/led/blob/c4fa72405f510b7fd16052f90a598c429b3104a6/src/graphemes.rs>
use ropey::{iter::Chunks, str_utils::byte_to_char_idx, RopeSlice};
use unicode_segmentation::{GraphemeCursor, GraphemeIncomplete};
use unicode_width::UnicodeWidthStr;
use std::borrow::Cow;
use std::fmt::{self, Debug, Display};
use std::marker::PhantomData;
use std::ops::Deref;
use std::ptr::NonNull;
use std::{slice, str};
use crate::chars::{char_is_whitespace, char_is_word};
use crate::LineEnding;
#[inline]
pub fn tab_width_at(visual_x: usize, tab_width: u16) -> usize {
tab_width as usize - (visual_x % tab_width as usize)
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum Grapheme<'a> {
Newline,
Tab { width: usize },
Other { g: GraphemeStr<'a> },
}
impl<'a> Grapheme<'a> {
pub fn new(g: GraphemeStr<'a>, visual_x: usize, tab_width: u16) -> Grapheme<'a> {
match g {
g if g == "\t" => Grapheme::Tab {
width: tab_width_at(visual_x, tab_width),
},
_ if LineEnding::from_str(&g).is_some() => Grapheme::Newline,
_ => Grapheme::Other { g },
}
}
pub fn change_position(&mut self, visual_x: usize, tab_width: u16) {
if let Grapheme::Tab { width } = self {
*width = tab_width_at(visual_x, tab_width)
}
}
/// Returns the a visual width of this grapheme,
#[inline]
pub fn width(&self) -> usize {
match *self {
// width is not cached because we are dealing with
// ASCII almost all the time which already has a fastpath
// it's okay to convert to u16 here because no codepoint has a width larger
// than 2 and graphemes are usually atmost two visible codepoints wide
Grapheme::Other { ref g } => grapheme_width(g),
Grapheme::Tab { width } => width,
Grapheme::Newline => 1,
}
}
pub fn is_whitespace(&self) -> bool {
!matches!(&self, Grapheme::Other { g } if !g.chars().all(char_is_whitespace))
}
// TODO currently word boundaries are used for softwrapping.
// This works best for programming languages and well for prose.
// This could however be improved in the future by considering unicode
// character classes but
pub fn is_word_boundary(&self) -> bool {
!matches!(&self, Grapheme::Other { g,.. } if g.chars().all(char_is_word))
}
}
impl Display for Grapheme<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
Grapheme::Newline => write!(f, " "),
Grapheme::Tab { width } => {
for _ in 0..width {
write!(f, " ")?;
}
Ok(())
}
Grapheme::Other { ref g } => {
write!(f, "{g}")
}
}
}
}
#[must_use]
pub fn grapheme_width(g: &str) -> usize {
if g.as_bytes()[0] <= 127 {
// Fast-path ascii.
// Point 1: theoretically, ascii control characters should have zero
// width, but in our case we actually want them to have width: if they
// show up in text, we want to treat them as textual elements that can
// be edited. So we can get away with making all ascii single width
// here.
// Point 2: we're only examining the first codepoint here, which means
// we're ignoring graphemes formed with combining characters. However,
// if it starts with ascii, it's going to be a single-width grapeheme
// regardless, so, again, we can get away with that here.
// Point 3: we're only examining the first _byte_. But for utf8, when
// checking for ascii range values only, that works.
1
} else {
// We use max(1) here because all grapeheme clusters--even illformed
// ones--should have at least some width so they can be edited
// properly.
// TODO properly handle unicode width for all codepoints
// example of where unicode width is currently wrong: 🤦🏼‍♂️ (taken from https://hsivonen.fi/string-length/)
UnicodeWidthStr::width(g).max(1)
}
}
#[must_use]
pub fn nth_prev_grapheme_boundary(slice: RopeSlice, char_idx: usize, n: usize) -> usize {
// Bounds check
debug_assert!(char_idx <= slice.len_chars());
// We work with bytes for this, so convert.
let mut byte_idx = slice.char_to_byte(char_idx);
// Get the chunk with our byte index in it.
let (mut chunk, mut chunk_byte_idx, mut chunk_char_idx, _) = slice.chunk_at_byte(byte_idx);
// Set up the grapheme cursor.
let mut gc = GraphemeCursor::new(byte_idx, slice.len_bytes(), true);
// Find the previous grapheme cluster boundary.
for _ in 0..n {
loop {
match gc.prev_boundary(chunk, chunk_byte_idx) {
Ok(None) => return 0,
Ok(Some(n)) => {
byte_idx = n;
break;
}
Err(GraphemeIncomplete::PrevChunk) => {
let (a, b, c, _) = slice.chunk_at_byte(chunk_byte_idx - 1);
chunk = a;
chunk_byte_idx = b;
chunk_char_idx = c;
}
Err(GraphemeIncomplete::PreContext(n)) => {
let ctx_chunk = slice.chunk_at_byte(n - 1).0;
gc.provide_context(ctx_chunk, n - ctx_chunk.len());
}
_ => unreachable!(),
}
}
}
let tmp = byte_to_char_idx(chunk, byte_idx - chunk_byte_idx);
chunk_char_idx + tmp
}
/// Finds the previous grapheme boundary before the given char position.
#[must_use]
#[inline(always)]
pub fn prev_grapheme_boundary(slice: RopeSlice, char_idx: usize) -> usize {
nth_prev_grapheme_boundary(slice, char_idx, 1)
}
#[must_use]
pub fn nth_next_grapheme_boundary(slice: RopeSlice, char_idx: usize, n: usize) -> usize {
// Bounds check
debug_assert!(char_idx <= slice.len_chars());
// We work with bytes for this, so convert.
let mut byte_idx = slice.char_to_byte(char_idx);
// Get the chunk with our byte index in it.
let (mut chunk, mut chunk_byte_idx, mut chunk_char_idx, _) = slice.chunk_at_byte(byte_idx);
// Set up the grapheme cursor.
let mut gc = GraphemeCursor::new(byte_idx, slice.len_bytes(), true);
// Find the nth next grapheme cluster boundary.
for _ in 0..n {
loop {
match gc.next_boundary(chunk, chunk_byte_idx) {
Ok(None) => return slice.len_chars(),
Ok(Some(n)) => {
byte_idx = n;
break;
}
Err(GraphemeIncomplete::NextChunk) => {
chunk_byte_idx += chunk.len();
let (a, _, c, _) = slice.chunk_at_byte(chunk_byte_idx);
chunk = a;
chunk_char_idx = c;
}
Err(GraphemeIncomplete::PreContext(n)) => {
let ctx_chunk = slice.chunk_at_byte(n - 1).0;
gc.provide_context(ctx_chunk, n - ctx_chunk.len());
}
_ => unreachable!(),
}
}
}
let tmp = byte_to_char_idx(chunk, byte_idx - chunk_byte_idx);
chunk_char_idx + tmp
}
#[must_use]
pub fn nth_next_grapheme_boundary_byte(slice: RopeSlice, mut byte_idx: usize, n: usize) -> usize {
// Bounds check
debug_assert!(byte_idx <= slice.len_bytes());
// Get the chunk with our byte index in it.
let (mut chunk, mut chunk_byte_idx, mut _chunk_char_idx, _) = slice.chunk_at_byte(byte_idx);
// Set up the grapheme cursor.
let mut gc = GraphemeCursor::new(byte_idx, slice.len_bytes(), true);
// Find the nth next grapheme cluster boundary.
for _ in 0..n {
loop {
match gc.next_boundary(chunk, chunk_byte_idx) {
Ok(None) => return slice.len_bytes(),
Ok(Some(n)) => {
byte_idx = n;
break;
}
Err(GraphemeIncomplete::NextChunk) => {
chunk_byte_idx += chunk.len();
let (a, _, _c, _) = slice.chunk_at_byte(chunk_byte_idx);
chunk = a;
// chunk_char_idx = c;
}
Err(GraphemeIncomplete::PreContext(n)) => {
let ctx_chunk = slice.chunk_at_byte(n - 1).0;
gc.provide_context(ctx_chunk, n - ctx_chunk.len());
}
_ => unreachable!(),
}
}
}
byte_idx
}
/// Finds the next grapheme boundary after the given char position.
#[must_use]
#[inline(always)]
pub fn next_grapheme_boundary(slice: RopeSlice, char_idx: usize) -> usize {
nth_next_grapheme_boundary(slice, char_idx, 1)
}
/// Finds the next grapheme boundary after the given byte position.
#[must_use]
#[inline(always)]
pub fn next_grapheme_boundary_byte(slice: RopeSlice, byte_idx: usize) -> usize {
nth_next_grapheme_boundary_byte(slice, byte_idx, 1)
}
/// Returns the passed char index if it's already a grapheme boundary,
/// or the next grapheme boundary char index if not.
#[must_use]
#[inline]
pub fn ensure_grapheme_boundary_next(slice: RopeSlice, char_idx: usize) -> usize {
if char_idx == 0 {
char_idx
} else {
next_grapheme_boundary(slice, char_idx - 1)
}
}
/// Returns the passed char index if it's already a grapheme boundary,
/// or the prev grapheme boundary char index if not.
#[must_use]
#[inline]
pub fn ensure_grapheme_boundary_prev(slice: RopeSlice, char_idx: usize) -> usize {
if char_idx == slice.len_chars() {
char_idx
} else {
prev_grapheme_boundary(slice, char_idx + 1)
}
}
/// Returns the passed byte index if it's already a grapheme boundary,
/// or the next grapheme boundary byte index if not.
#[must_use]
#[inline]
pub fn ensure_grapheme_boundary_next_byte(slice: RopeSlice, byte_idx: usize) -> usize {
if byte_idx == 0 {
byte_idx
} else {
// TODO: optimize so we're not constructing grapheme cursor twice
if is_grapheme_boundary_byte(slice, byte_idx) {
byte_idx
} else {
next_grapheme_boundary_byte(slice, byte_idx)
}
}
}
/// Returns whether the given char position is a grapheme boundary.
#[must_use]
pub fn is_grapheme_boundary(slice: RopeSlice, char_idx: usize) -> bool {
// Bounds check
debug_assert!(char_idx <= slice.len_chars());
// We work with bytes for this, so convert.
let byte_idx = slice.char_to_byte(char_idx);
// Get the chunk with our byte index in it.
let (chunk, chunk_byte_idx, _, _) = slice.chunk_at_byte(byte_idx);
// Set up the grapheme cursor.
let mut gc = GraphemeCursor::new(byte_idx, slice.len_bytes(), true);
// Determine if the given position is a grapheme cluster boundary.
loop {
match gc.is_boundary(chunk, chunk_byte_idx) {
Ok(n) => return n,
Err(GraphemeIncomplete::PreContext(n)) => {
let (ctx_chunk, ctx_byte_start, _, _) = slice.chunk_at_byte(n - 1);
gc.provide_context(ctx_chunk, ctx_byte_start);
}
Err(_) => unreachable!(),
}
}
}
/// Returns whether the given byte position is a grapheme boundary.
#[must_use]
pub fn is_grapheme_boundary_byte(slice: RopeSlice, byte_idx: usize) -> bool {
// Bounds check
debug_assert!(byte_idx <= slice.len_bytes());
// Get the chunk with our byte index in it.
let (chunk, chunk_byte_idx, _, _) = slice.chunk_at_byte(byte_idx);
// Set up the grapheme cursor.
let mut gc = GraphemeCursor::new(byte_idx, slice.len_bytes(), true);
// Determine if the given position is a grapheme cluster boundary.
loop {
match gc.is_boundary(chunk, chunk_byte_idx) {
Ok(n) => return n,
Err(GraphemeIncomplete::PreContext(n)) => {
let (ctx_chunk, ctx_byte_start, _, _) = slice.chunk_at_byte(n - 1);
gc.provide_context(ctx_chunk, ctx_byte_start);
}
Err(_) => unreachable!(),
}
}
}
/// An iterator over the graphemes of a `RopeSlice`.
#[derive(Clone)]
pub struct RopeGraphemes<'a> {
text: RopeSlice<'a>,
chunks: Chunks<'a>,
cur_chunk: &'a str,
cur_chunk_start: usize,
cursor: GraphemeCursor,
}
impl<'a> fmt::Debug for RopeGraphemes<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("RopeGraphemes")
.field("text", &self.text)
.field("chunks", &self.chunks)
.field("cur_chunk", &self.cur_chunk)
.field("cur_chunk_start", &self.cur_chunk_start)
// .field("cursor", &self.cursor)
.finish()
}
}
impl<'a> RopeGraphemes<'a> {
#[must_use]
pub fn new(slice: RopeSlice) -> RopeGraphemes {
let mut chunks = slice.chunks();
let first_chunk = chunks.next().unwrap_or("");
RopeGraphemes {
text: slice,
chunks,
cur_chunk: first_chunk,
cur_chunk_start: 0,
cursor: GraphemeCursor::new(0, slice.len_bytes(), true),
}
}
}
impl<'a> Iterator for RopeGraphemes<'a> {
type Item = RopeSlice<'a>;
fn next(&mut self) -> Option<RopeSlice<'a>> {
let a = self.cursor.cur_cursor();
let b;
loop {
match self
.cursor
.next_boundary(self.cur_chunk, self.cur_chunk_start)
{
Ok(None) => {
return None;
}
Ok(Some(n)) => {
b = n;
break;
}
Err(GraphemeIncomplete::NextChunk) => {
self.cur_chunk_start += self.cur_chunk.len();
self.cur_chunk = self.chunks.next().unwrap_or("");
}
Err(GraphemeIncomplete::PreContext(idx)) => {
let (chunk, byte_idx, _, _) = self.text.chunk_at_byte(idx.saturating_sub(1));
self.cursor.provide_context(chunk, byte_idx);
}
_ => unreachable!(),
}
}
if a < self.cur_chunk_start {
Some(self.text.byte_slice(a..b))
} else {
let a2 = a - self.cur_chunk_start;
let b2 = b - self.cur_chunk_start;
Some((&self.cur_chunk[a2..b2]).into())
}
}
}
/// A highly compressed Cow<'a, str> that holds
/// atmost u31::MAX bytes and is readonly
pub struct GraphemeStr<'a> {
ptr: NonNull<u8>,
len: u32,
phantom: PhantomData<&'a str>,
}
impl GraphemeStr<'_> {
const MASK_OWNED: u32 = 1 << 31;
fn compute_len(&self) -> usize {
(self.len & !Self::MASK_OWNED) as usize
}
}
impl Deref for GraphemeStr<'_> {
type Target = str;
fn deref(&self) -> &Self::Target {
unsafe {
let bytes = slice::from_raw_parts(self.ptr.as_ptr(), self.compute_len());
str::from_utf8_unchecked(bytes)
}
}
}
impl Drop for GraphemeStr<'_> {
fn drop(&mut self) {
if self.len & Self::MASK_OWNED != 0 {
// free allocation
unsafe {
drop(Box::from_raw(slice::from_raw_parts_mut(
self.ptr.as_ptr(),
self.compute_len(),
)));
}
}
}
}
impl<'a> From<&'a str> for GraphemeStr<'a> {
fn from(g: &'a str) -> Self {
GraphemeStr {
ptr: unsafe { NonNull::new_unchecked(g.as_bytes().as_ptr() as *mut u8) },
len: i32::try_from(g.len()).unwrap() as u32,
phantom: PhantomData,
}
}
}
impl<'a> From<String> for GraphemeStr<'a> {
fn from(g: String) -> Self {
let len = g.len();
let ptr = Box::into_raw(g.into_bytes().into_boxed_slice()) as *mut u8;
GraphemeStr {
ptr: unsafe { NonNull::new_unchecked(ptr) },
len: i32::try_from(len).unwrap() as u32,
phantom: PhantomData,
}
}
}
impl<'a> From<Cow<'a, str>> for GraphemeStr<'a> {
fn from(g: Cow<'a, str>) -> Self {
match g {
Cow::Borrowed(g) => g.into(),
Cow::Owned(g) => g.into(),
}
}
}
impl<T: Deref<Target = str>> PartialEq<T> for GraphemeStr<'_> {
fn eq(&self, other: &T) -> bool {
self.deref() == other.deref()
}
}
impl PartialEq<str> for GraphemeStr<'_> {
fn eq(&self, other: &str) -> bool {
self.deref() == other
}
}
impl Eq for GraphemeStr<'_> {}
impl Debug for GraphemeStr<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
Debug::fmt(self.deref(), f)
}
}
impl Display for GraphemeStr<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
Display::fmt(self.deref(), f)
}
}
impl Clone for GraphemeStr<'_> {
fn clone(&self) -> Self {
self.deref().to_owned().into()
}
}