You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

38 lines
1.0 KiB
Python

4 years ago
import numpy as np
import pycuda.autoinit
from pycuda import gpuarray
from time import time
from pycuda.elementwise import ElementwiseKernel
host_data = np.float32(np.random.random(50000000))
gpu_2x_ker = ElementwiseKernel(
"float *in, float *out",
"out[i] = 2*in[i];",
"gpu_2x_ker")
# warm up
test_data = gpuarray.to_gpu(host_data)
gpu_2x_ker(test_data, gpuarray.empty_like(test_data))
def speed_comparison():
t1 = time()
host_data_2x = host_data * np.float32(2)
t2 = time()
print('total time to compute on CPU: %f' % (t2 - t1))
device_data = gpuarray.to_gpu(host_data)
# allocate memory for output
device_data_2x = gpuarray.empty_like(device_data)
t1 = time()
gpu_2x_ker(device_data, device_data_2x)
t2 = time()
from_device = device_data_2x.get()
print('total time to compute on GPU: %f' % (t2 - t1))
print(
'Is the host computation the same as the GPU computation? : {}'.format(np.allclose(from_device, host_data_2x)))
if __name__ == '__main__':
speed_comparison()