You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

102 lines
2.9 KiB
Python

4 years ago
# Iterative Conway's game of life in Python / CUDA C
# this version is meant to illustrate the use of shared kernel memory in CUDA.
# written by Brian Tuomanen for "Hands on GPU Programming with Python and CUDA"
import pycuda.autoinit
import pycuda.driver as drv
from pycuda import gpuarray
from pycuda.compiler import SourceModule
import numpy as np
import matplotlib.pyplot as plt
from time import time
shared_ker = SourceModule("""
#define _iters 1000000
#define _X ( threadIdx.x + blockIdx.x * blockDim.x )
#define _Y ( threadIdx.y + blockIdx.y * blockDim.y )
#define _WIDTH ( blockDim.x * gridDim.x )
#define _HEIGHT ( blockDim.y * gridDim.y )
#define _XM(x) ( (x + _WIDTH) % _WIDTH )
#define _YM(y) ( (y + _HEIGHT) % _HEIGHT )
#define _INDEX(x,y) ( _XM(x) + _YM(y) * _WIDTH )
// return the number of living neighbors for a given cell
__device__ int nbrs(int x, int y, int * in)
{
return ( in[ _INDEX(x -1, y+1) ] + in[ _INDEX(x-1, y) ] + in[ _INDEX(x-1, y-1) ] \
+ in[ _INDEX(x, y+1)] + in[_INDEX(x, y - 1)] \
+ in[ _INDEX(x+1, y+1) ] + in[ _INDEX(x+1, y) ] + in[ _INDEX(x+1, y-1) ] );
}
__global__ void conway_ker_shared(int * p_lattice, int iters)
{
// x, y are the appropriate values for the cell covered by this thread
int x = _X, y = _Y;
__shared__ int lattice[32*32];
lattice[_INDEX(x,y)] = p_lattice[_INDEX(x,y)];
__syncthreads();
for (int i = 0; i < iters; i++)
{
// count the number of neighbors around the current cell
int n = nbrs(x, y, lattice);
int cell_value;
// if the current cell is alive, then determine if it lives or dies for the next generation.
if ( lattice[_INDEX(x,y)] == 1)
switch(n)
{
// if the cell is alive: it remains alive only if it has 2 or 3 neighbors.
case 2:
case 3: cell_value = 1;
break;
default: cell_value = 0;
}
else if( lattice[_INDEX(x,y)] == 0 )
switch(n)
{
// a dead cell comes to life only if it has 3 neighbors that are alive.
case 3: cell_value = 1;
break;
default: cell_value = 0;
}
__syncthreads();
lattice[_INDEX(x,y)] = cell_value;
__syncthreads();
}
__syncthreads();
p_lattice[_INDEX(x,y)] = lattice[_INDEX(x,y)];
__syncthreads();
}
""")
conway_ker_shared = shared_ker.get_function("conway_ker_shared")
if __name__ == '__main__':
# set lattice size
N = 32
lattice = np.int32(np.random.choice([1, 0], N * N, p=[0.25, 0.75]).reshape(N, N))
lattice_gpu = gpuarray.to_gpu(lattice)
conway_ker_shared(lattice_gpu, np.int32(1000000), grid=(1, 1, 1), block=(32, 32, 1))
fig = plt.figure(1)
plt.imshow(lattice_gpu.get())
plt.show()